

COMPORTAMENTO TINTORIAL DO *C.I. REACTIVE*BLUE 222 NO TINGIMENTO DE ALGODÃO POR PROCESSO DE BATELADA

C.I. REACTIVE BLUE 222 DYESTUFF BEHAVIOR IN THE DYEING OF COTTON BY BATCHPROCESS

Raquel do Nascimento Bezerra¹ Maurício de Campos Araújo² Jorge Marcos Rosa³

RESUMO

O corante *C.I. Reactive Blue 222* (RB222) foi aplicado sobre meia malha de algodão, por processo "*All-in*", com intuito de verificar o grau de exaustão. Verificou-se que, de cada 1,25 g de RB222 utilizados para o tingimento de um quilograma de substrato, 0,794 g reagem com a fibra, sendo o restante, a quantia de 0,456 g, descartado no efluente final, representando uma porcentagem de exaustão igual a 63,54 %. O resultado obtido demonstra que pesquisas sobre otimização de processos são fundamentais para tentar diminuir a absorciometria de efluentes de tingimentos com esse corante.

Palavras-chave: Corante reativo. Tingimento de algodão. Porcentagem de exaustão.

ABSTRACT

The dyestuff C.I. Reactive Blue 222 (RB222) was used to dye knit cotton, by "All-in" process, in order to verify the degree of exhaustion. It was observed that each 1.25 g of RB222 used for dyeing a kilogram of substrate kg, 0.794 g react with the fiber and an amount of 0.456 g is discharge in the final effluent, representing a percentage of exhaustion equal to 63.54%. The result shows that research on process optimization are fundamental in order to reducing the absorptiometry in the dyeing wastewater.

Keywords: Reactive dyestuff. Cotton dyeing. Percentage of exhaustion.

² Prof. Dr. do Programa de Mestrado em Têxtil e Moda, EACH, USP.

¹ Mestranda.

³ Prof. Dr., Pós-Graduação em Química Têxtil da Faculdade de Tecnologia SENAI AntoineSkaf.

1 INDÚSTRIA TÊXTIL

Na indústria têxtil brasileira em 2012, o tingimento e acabamento de tecidos de malha de algodão alcançou a marca de 242 mil toneladas (PRADO, 2013). Além disso, o setor têxtil é responsável por uma grande parte da economia de países desenvolvidos, bem como a principal atividade econômica de alguns países em desenvolvimento (IGNACHEWSKI et al., 2010).

As principais atividades são desenvolvidas com avançadas tecnologias que visam o aumento da produção e a racionalização de seus custos, entretanto, preocupações cotidianas sobre indústrias, como operam ou como administram seus resíduos, fazem surgir o conceito de impacto ambiental, que representa a alteração significativa dos sistemas naturais provocada por ações humanas. Torna-se necessário o envolvimento de toda uma organização para que se englobe como inovação a preocupação ambiental e ecológica (PORTOCARRERO, 2011; MORGADO, 2011; MADEIRA, 2011; LEITE et al., 2013).

A indústria têxtil, em particular, apresenta elevada demanda de água em seus processos, gerando grande quantidade de águas residuárias, que geralmente contém altas cargas de sais dissolvidos, surfactantes, sólidos suspensos e matérias orgânicas, principalmente de corantes na forma de moléculas complexas. Assim sendo, dos impactos ambientais, um dos principais problemas na indústria têxtil diz respeito à geração de efluentes poluidores (HASSEMER, 2006; BABAN et al., 2004).

A água é um recurso natural essencial aos processos bioquímicos dos seres vivos e representa um fator importante nas atividades industriais de vários bens de consumo. O seu uso de forma racional, evitando o desperdício e a poluição, não deveria ser motivo de preocupação somente aos ambientalistas, mas também, para as instituições governamentais e para os processos produtivos, pois 1/6 da população mundial não tem acesso a água potável (FAVERE; RIELLA; ROSA, 2010).

No beneficiamento do algodão, por exemplo, a geração de efluentes e a não reutilização dos banhos de processamento ocasiona um descarte de, no mínimo, 35 L·kg⁻¹ de substrato tratado. Esse efluente é composto por diversos contaminantes tais como

dispersantes, tensoativos, silicatos e fixadores, dentre outros. A variação de corantes é significativa, gerando unidades absorciométricas de cor na faixa de 420 nm a 600 nm (MACHADO et al., 2006).

2 CORANTES REATIVOS

Utilizados principalmente para o tingimento do algodão, fibra natural mais consumida no Brasil, os corantes reativos possuem bons índices de solidezes da cor a tratamentos úmidos e proporciona cores em várias tonalidades brilhantes. De todas as fibras têxteis o algodão ainda é a mais usada no Brasil e mais de 50% do algodão produzido é tinto com corantes reativos. É estimado que aproximadamente entre 10% e 60% do corante é perdido durante o tingimento, produzindo efluentes extremamente coloridos. Estes corantes contidos no efluente descarregado em corpos hídricos dificulta a penetração de luz em corpos d'água, inibindo a fotossíntese da flora aquática (MARTINS et al., 2011; ROSA et al, 2015).

Por fazer parte de uma tricromia recomendada pelo fabricante, o *C.I. Reactive Blue 222* (RB222) tem sido alvo de várias pesquisas. Dentre elas, podem ser citados Morais (2015), que verificou a toxicidade do RB222 em efluente pós-tratado com feixe de elétrons e Santos (2015), que avaliou a descoloração de efluente contendo o corante, através da ação do fungo *Pleurotus Ostreatus* em biorreator, com reutilização da biomassa fúngica.

Na Figura 1, a estrutura química do RB222, um corante de grupo cromóforo azo, bi- heterofuncional, do tipo vinilsulfônico e monoclorotriazina, de formula molecular igual a C37H23ClN10Na6O22S7, massa molar igual a 1357,49 g·mol⁻¹ e número de registro CAS 93051- 44-6.

Figura 1 – Estrutura do RB222 Fonte: Morais (2015)

3 OBJETIVO

O principal objetivo deste estudo é verificar a porcentagem de exaustão do corante *C.I. Reactive Blue 222* (RB222) no tingimento de tecido de algodão 100%, determinando matematicamente, com dados obtidos por espectrofotometria, a quantidade de corante presente no efluente final do tingimento.

4 METODOLOGIA

O tingimento foi realizado em equipamento de laboratório Mathis HT Alt-1 em tecido de meia malha de algodão 100%, fio de algodão 30/1 Ne cardado, gramatura de 130 g·m⁻¹, produzido em máquina circular monofrontura Orizio, modelo John/C, 3 alimentadores por polegada, diâmetro de 30 polegadas, finura 28, 30 RPM.

Os reagentes utilizados para o processo de tingimento foram dispersante, RB222, cloreto de sódio 95%, carbonato de sódio 98% e hidróxido de sódio 50 ºBé. A receita encontra-se descrita na Tabela 1.

Tabela 1 – Quantidade de reagentes utilizados nos processos de preparação etingimento

Reagentes		Quantidades
Α	Dispersante (g·L ⁻¹)	1,0
В	Cloreto de Sódio (g·L ⁻¹)	50,0
С	RB222 (%)	1,5
D	Carbonato de Sódio (g·L ⁻¹)	5,0
E	Hidróxido de Sódio (mL·L ⁻¹)	1,8

O alvejamento foi executado segundo processo descrito em Rosa et al (2012) e tinto a 1,5% sobre a massa do substrato (MS), em relação de banho de doze litros de banho para cada um quilograma de substrato (RB 1:12), conforme procedimento proposto pelo fabricante do corante. O processo está demonstrado graficamente na Figura 2 e todos os banhos do tingimento foram coletados para avaliação de absorvância por espectrofotometria visível (Konica Minolta CM-3600d).

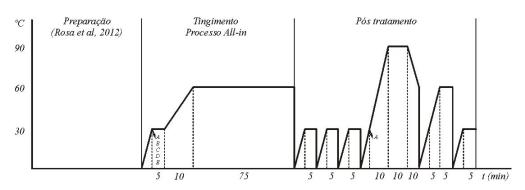


Figura 2 – Processo de tingimento

5 MODELAGEM

Para poder determinar a quantidade de corante presente em cada etapa do processo de tingimento, criou-se uma curva de calibração em um gráfico de dispersão (Excel) partindo-se do banho inicial e diluindo-se de 10% em 10% até a concentração final, igual a 10% de corante da quantidade inicial. Na Tabela 2, a descrição dos valores de

concentração em relação à absorvância e na Figura 3, os dados plotados em gráfico de dispersão.

Tabela 2 – Valores da concentração de [RB222] em relação àabsorvância

[RB222]	% corante	água	Abs
1,250	100	0	1,5346
1,125	90	10	1,3645
1,000	80	20	1,2125
0,875	70	30	1,0545
0,750	60	40	0,8996
0,625	50	50	0,7435
0,500	40	60	0,5680
0,375	30	70	0,4489
0,250	20	80	0,3032
0,125	10	90	0,1606

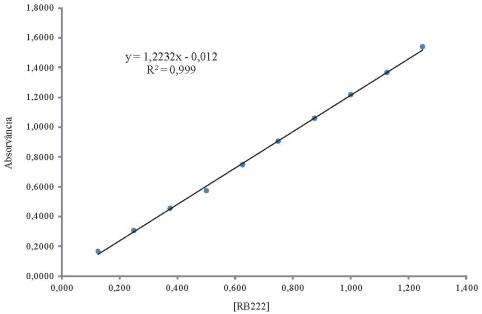


Figura 3 – Gráfico de correlação entre Abs e [RB222]

A partir desta curva, obteve-se a Equação 1, com coeficiente de regressão quadrática igual a 0,99.

$$[RB222] = \frac{Abs + 0.012}{1.2232} \tag{1}$$

Onde: [RB222] = concentração de corante em g·L⁻¹; Abs = absorvância em 600 nm

O processo de tingimento possui sete etapas (Figura 2), sendo a primeira o tingimento em si e as demais, o tratamento posterior. Todas elas podem apresentar residual de corante e, assim sendo, para determinação da concentração de corante em cada uma delas, retirou-se uma alíquota de 12 mL, alocadas em cubetas de caminho ótico igual a 1,0 cm. Em seguida efetuou-se a leitura espectrofométrica para obtenção da absorvância (Konica Minolta CM- 3600d).

Assumindo que cada amostra coletada é uma derivada, sendo "f(x)" igual a Abs e "x" igual a [RB222], temos a Equação 2.

$$\partial_n = \frac{\partial \text{ Abs}}{\partial \left[\text{RB222} \right]} \tag{2}$$

Onde: n = numero da etapa do processo; [RB222] = concentração do corante em $g \cdot L^{-1}$; Abs = absorvância em 600 nm

Portanto, a concentração final de RB222 no efluente final foi definida pela integração das sete derivadas (numero de etapas do processo de tingimento), sendo representada pela Equação 3.

$$\frac{\partial Abs_{f}}{\partial [RB222]_{f}} = \int_{\partial_{7}}^{\partial_{1}} \frac{\partial Abs_{n}}{\partial [RB22]_{n}}$$
(3)

Para o cálculo da porcentagem de exaustão, utilizou-se a Equação 4.

% Exaustão=
$$\left(1 - \frac{\left[RB222 \right]_0}{\int_{\partial_7}^{\partial_1} \frac{\partial Abs_n}{\partial \left[RB222 \right]_n} } \right) \cdot 100$$
 (4)

6 RESULTADOS E DISCUSSÃO

Os valores de absorvância dos sete banhos, obtidos por leitura espectrofotométrica, estão descritos na Tabela 3. De posse desses valores e aplicando a equação 1, determinou-se a concentração, em g·L⁻¹, de corante em cada um dos banhos coletados.

Tabela 3 – Valores da concentração de [RB222] em relação à absorvância nas sete etapas do processo

2
3
89
6
.5
57
.1
)4

Integrando-se os valores de todas as concentrações através da equação 3, obteve-se uma concentração final de [RB222] no efluente igual a $0,456\,\mathrm{g\cdot L}^{-1}$.

Aplicando-se a equação 4, obteve-se um valor de porcentagem de exaustão igual a 63,54 %, ou seja, de cada 1,25 g de RB22 inicialmente utilizados para o tingimento de

um quilograma de substrato, apenas 0,794 g reagem com o substrato, sendo o restante descartado para o efluente.

7 CONCLUSÃO

Observou-se que boa parte do RB222 utilizado não reagiu com o substrato. Para cada quilograma de substrato tingido, aproximadamente 36,5 % de corante é descartado no efluente.

O tingimento foi efetuado por um processo denominado "All-in", que significa a adição de todos os insumos químicos no início do processo. O resultado obtido demonstra que pesquisas em otimização de processos são fundamentais, tais como adição escalonada de reagentes, estudos sobre tempo e temperatura, dentre outros.

Além disso, o estudo foi efetuado baseando-se em um corante, azul, indicado pelo fabricante para uma tricromia. Isto sugere que pesquisas também sejam efetuadas com os demais corantes, amarelo e vermelho, por exemplo, dentre outros.

Maiores valores de porcentagem de exaustão significam diminuição dos custos fixos e também menores cargas absorciométricas nos efluentes.

REFERÊNCIAS

BABAN, A.; YEDILER, A.; CILIZ, N. K.; KETTRUP, A.: Biodegradability oriented treatability studies strenght segregated wastewater of a woolen textile dyeing plant. **Chemosphere**, v. 57, p. 731-738, 2004.

FAVERE, V. L.; RIELLA, H. G.; ROSA, S. Cloreto de n-(2-hidroxil) propil-3-trimetilamônio quitosana como adsorvente de corantes reativos em solução aquosa. In: **Quimica Nova**, v. 33, p. 1476-1481, n. 7, 2010.

HASSEMER, M. E. N. **Oxidação Fotoquímica - UV/H2O2 -** para Degradação de Poluentes em Efluentes da Indústria Têxtil. (Tese) - UFSC, Universidade Federal de Santa Catarina, 2006.

IGNACHEWSKI F.; FUJIWARA S. T.; CÓTICA L. F.; CARNEIRO L. M.; TAUCHERTE.; PERALTA-ZAMORA, P.: Degradation of reactive dyes by photo-Fenton process involving the use of molecular sieve 4A modified with Fe3+. In: **Química Nova**, 338, 1640-1645, 2010 (In Portuguese).

LEITE, A. S.; TRINDADE, N. B.; ARAÚJO, M. C.; BEZERRA, R. N., ROSA, J. M.; COSTA, J. M. Custos ecológicos e sustentabilidade em recursos hídricos na indústria têxtil. In: **Revista de Ciências Gerenciais**, v. 17, n. 26, p. 103-111, Anhanguera Educacional, 2013.

MACHADO, E. L.; LOPEZ, D. A. R.; KIST, L. T.; HOELTZ, J. M.; JACHETTI, D. M. Remediação mais limpa na indústria de tingimento têxtil. In: Congresso Interamericano de Ingenieria Sanitaria y Ambiental, 30. 2006, Punta del Este. **Anais...** V.1, p.1-6, 2006.

MADEIRA, L. Estudo da Aplicação de Processos Oxidativos Avançados no Tratamento de Efluentes Têxteis Visando o Seu Reúso. (Dissertação) - Universidade Federal do Piauí (UFP). Teresinha — Piauí, 2011.

MARTINS, L. M.; SILVA, C.E.; MOITA NETO, J. M.; LIMA, A. S.; MOREIRA, R. F. P. M. Application of Fenton, photo-Fenton and UV/H₂O₂ treatment of textile wastewater containing synthetic dye black biozol UC. **Eng. Sanit. Ambient**., n. 16, p. 261-270, 2011.

MORAIS, A. V. Avaliação da toxicidade e remoção da cor de um efluente têxtil tratado com feixe de eletrons. (Dissertação) - Instituto de Pesquisas Energéticas e Nucleares, USP. São Paulo, 2015.

MORGADO, E. M. Inovação, novos conceitos ampliados. In: **Revista de Ciências Gerenciais**, v. 15, n. 21, p. 225-235, 2011.

PRADO M. V. Relatório Setorial da Indústria Têxtil Brasileira, ABIT/IEMI, 2013.

PORTOCARRERO, I. R. Desenvolvimento sustentável e energias renováveis. In: **Revista de Ciências Gerenciais**, v. 15, n. 22, p. 273-286, 2011.

ROSA, J. M. **Sustentabilidade no Beneficiamento Têxtil:** Produção de tingimentos com reuso de efluente tratado por fotocatálise via UV/H2O2. Dissertação (Mestrado) – UNINOVE, Universidade Nove de Julho, 2010.

ROSA, J. M.; TAMBOURGI, E. B.; SANTANA, J. C. C.; CARMO, R. A. C. Estudo de variáveis e de custos ecológicos no pré-tratamento de tecidos de algodão com peróxido de hidrogênio. In: **Química Têxtil**, n. 109, p. 30-38, ABQCT, 2012.

ROSA, J. M.; FILETI, A. M. F.; TAMBOURGI, E. B.; SANTANA, J. C. C. Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by Ultraviolet / Hydrogen peroxide homogeneous photocatalysis. In: **Journal of Cleaner Production**, n. 90, p. 60-65, 2015.